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The concept of vulnerability is introduced for a model of random, dynamical
interactions on networks. In this model, known as influence model, the nodes are
arranged in an arbitrary network, while the evolution of the status at a node is
according to an internal Markov chain, but with transition probabilities that de-
pend not only on the current status of that node, but also on the statuses of the
neighboring nodes. Vulnerability is treated analytically and numerically for several
networks with different topological structures, as well as for three real networks:
network of infrastructures, power grid, and WWW, identifying the most influential
nodes of these networks.
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1. Introduction

In everyday life we are surrounded, and increasingly dependent on engineered net-
work structures. Therefore, reliability of a network is a crucial for its design and
operation. The impact of component (link or node) failure on the performance of
the network as a whole depends in part on network topology and in part on the flow
occurring along the links. This impact is measured by network reliability. Tradi-
tionally, there are two approaches to evaluate the reliability of a stochastic network
(Sanso & Soumis 1991):

1. Static approach: network is considered as a graph. In this case, reliability
of the network is related to some measure of connectivity of the network
(Biechelt & Tittman 1991).

2. Dynamic approach: network is considered as a flow network that carries com-
modities from origin to destination nodes to satisfy a demand. In this case,
reliability of the network is related to the ability of the network to transmit
a level of flow (Chan et al. 1997; Kishimoto 1997).

Related to the concept of reliability is a concept of vulnerability, which has
been introduced in several fields including psychology, sociology, political science,
economics, epidemiology, biology, environmental and geosciences, and engineering
(McEntire 2005). In dictionary definitions of “vulnerable”, a common denominator
is references to deliberate actions (threats), e.g. “susceptible to attack”, and “open
to attack or assault by armed forces” (Merriam-Webster 2006). However, there is no
generally accepted definition of the concept vulnerability even if we only consider
technical, or engineering, applications. Below we will give a few examples of possible
definitions of vulnerability in relation to technical systems.
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Einarsson and Rausand (1998) study industrial systems, and define vulnerabil-
ity as “the properties of an industrial system; its premises, facilities, and production
equipment, including its human resources, human organization and all its software,
hardware, and net-ware, that may weaken or limit its ability to endure threats
and survive accidental events that originate both within and outside the system
boundaries”. Berdica (2002) defines vulnerability in the road transportation sys-
tem as “a susceptibility to incidents that can result in considerable reductions in
road network serviceability”. In the field of information security, vulnerability is
commonly thought of as a weakness in the security system that might be exploited
to cause harm or loss. Morakis et al. (2003) define vulnerability as a “measure of
the exploitability of a weakness”. In structural engineering, the term vulnerabil-
ity is often used to capture the “susceptibility of a component or a system to some
external action”. Thus, a structure is vulnerable if “any small damage produces dis-
proportionately large consequences” (Agarwal 2003). Finally, vulnerability is also
a topic in mathematics. In the branch of discrete mathematics called graph theory,
vulnerability implies a lack of resistance of the graph to the deletion of vertices and
edges (Barefoot et al. 1987).

In the network literature there are different approaches to the concept of vul-
nerability. One trend relates the vulnerability or robustness of a network with its
connectivity (Albert et al. 2000; Paul et al. 2005; Newman & Ghoshal 2008), while
others relate it with the decrease of efficiency when some vertices or edges are un-
der attack (Holme et al. 2002; Crucitti et al. 2003; Crucitti et al. 2004). This paper
proposes to study vulnerability of networks of interacting Markov chains. The con-
cept of interactions on networks is not new, and has appeared in various forms in
a variety of fields. The influence model (Asavathiratham 2000) differs from other
previous models of interactions (such as stochastic Ising model, cellular automata,
infinite particle system, voter model, interactive Markov chain) in several ways, two
most important are (1) each site (node) may contain an arbitrary (finite) local chain
and (2) the network may have an arbitrary (finite) graph and influence structure.
The influence model (Asavathiratham 2000; Asavathiratham et al. 2001; Roy et

al. 2002) is a simple (and mathematically tractable) model of random, dynamical
interactions on networks. It consists of a network of nodes, each with a status that
evolves over time. The evolution of the status at a node is according to an internal
Markov chain, but with transition probabilities that depend not only on the current
status of that node, but also on the statuses of the neighboring nodes.

In this paper, we introduce a new concept called VulnerabilityRank : it takes into
account the network topology, node dynamics, and potential node interactions in
calculating nodes’ influence and their relative priority. The behavior of the influence
model depends strongly on the so called influence matrix (to be defined precisely
bellow). We define vulnerability of the network as the stationary distribution π of
its influence matrix, which is the normalized left eigenvector of the influence matrix
associated with the eigenvalue 1. For binary influence model, it measures a steady-
state probability of the node failure. The vector π is called VulnerabilityRank: it
shows what are the most influential (vulnerable) nodes in the network. Vulnerabil-
ityRank is treated analytically and numerically for several networks with different
topological structures. We compute VulnerabilityRank for interdependency matrix
of a infrastructures network and EU power grid, showing the most influential (vul-
nerable) nodes. Our work differs from two most relevant for this paper concepts of
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PageRank (Brin & Page 1998) and SecureRank (Miura-Ko & Bambos 2007) in the
following: in both (Brin & Page 1998; Miura-Ko & Bambos 2007) nodes are static
and do not change in time, while in our work dynamics of each node is governed
by an arbitrary (finite) Markov chain.

2. Preliminaries: Influence model

The influence model is suggested in (Asavathiratham 2000) as a model of random,
dynamical interactions on networks. We refer the reader to (Asavathiratham 2000)
for a full account of the model and its properties; here we give a brief description
of the model. Define the directed graph of a n × n matrix A, denoted by Γ(A),
as the directed graph on nodes 1 to n, where a directed edge from i to j, denoted
by (i, j), exists if and only if aij 6= 0. The edge weight is given by aij . Consider
a graph with n nodes, referred to as sites; each site has a status value that varies
over time as it is ‘influenced’ by the neighbors. Assume that we are given an n× n
matrix D = [dij ] (dij ≥ 0). We further assume that D is a stochastic matrix, that
is

∑

j dij = 1 for each i. The graph Γ(DT ) will be called the network influence

graph. An edge (i, j) exists on this graph if the status of j can be influenced by the
status of i. The weight on edge (i, j) can be interpreted as the amount of influence
that i exerts on j relative to the total amount of influence that j receives. The
total amount of influence received by any site is equal to the sum of incoming edge
weights, which is 1, because D is stochastic matrix. Let mi be the order of the local
Markov chain at the site i for 1 ≤ i ≤ n. Let si(k) and pi(k) be the status vector
and the next-status probability mass-function (PMF) vector of site i at time k. Let
s(k) = [s1 . . . sn]T and p(k) = [p1 . . . pn]T denote the state and probability vectors
of length (m1 + . . . + mn). For each pair of i and j, the state transition matrix Aij

is an mi × mj nonnegative matrix whose rows sum to 1. The influence matrix is
defined as H = DT ⊗ {Aij}, where ⊗ denotes Kronecker product. The evolution
equations of the influence model are defined as:

pT (k + 1) = s
T (k)H, (2.1)

s
T (k + 1) = MultiRealize[pT (k + 1)], (2.2)

where the operation MultiRealize[p(k + 1)] treats each block of PMF’s within
pT (k+1) separately, independently realizing the new status vectors block by block.

The influence matrix H is, in general, not stochastic. However, its dominant
eigenvalue is one. Assuming for simplicity that all its eigenvalues are distinct, the
state-state value of the evolution of the status PMF approaches the left eigenvector
π corresponding to eigenvalue 1, that is

E(sT (k)) = E(sT (0))Hk → π

as k → ∞, where the notation E(·) is used for expectation or expected value. In
what follows we discuss in more detail the binary influence model.

3. VulnerabilityRank

Binary influence model is the special case of influence model for which each Aij

is equal to the 2 × 2 identity matrix I2, Aij = I2. For the binary influence model,
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the status of the site i is represented by si, si ∈ {0, 1}. The values 0 or 1 may
represent any two different statuses such as ‘on’ vs. ‘off’, ‘healthy’ vs. ‘sick’, or
‘normal’ vs. ‘failed’. Let s = [s1 . . . sn]T . The binary influence model refers to the
following equation:

p(k + 1) = Ds(k), (3.1)

s(k + 1) = Bernoulli[p(k + 1)]. (3.2)

Since D is stochastic matrix, it follows that pi(k) ≤ 1 for each k and i. The operation
Bernoulli[p(k + 1)] in (3.2) can be thought of as flipping n independent coins to
realize the entries of s(k + 1), where the probability of the i-th coin turning up
heads (status 1) is pi(k + 1). If Γ(DT ) is an ergodic (irreducible and aperiodic)
graph, then the only recurrent states in a binary influence model are the all-ones
and all-zeros consensus states. In this case,

lim
k→∞

Dk = 1πT (3.3)

where π is the left eigenvector corresponding to the eigenvalue 1, which is normalized
so that πT

1 = 1, and 1
T = [1 . . . 1] is vector of length n.

Definition 1. For binary influence model, we call the vector π VulnerabilityRank

for the network Γ(DT ).

The following theorem explains why the vector π is called VulnerabilityRank.

Theorem 3.1. Let π = [π1, . . . , πn]T and let πj = max1≤i≤n πi. Assume for the

binary influence model that the matrix D is ergodic. Assume further that sj(0) = 1
and si(0) = 0 for all i 6= j. Then the probability of reaching the all-ones consensus

state is πj and the node j is the most influential node.

The proof od the theorem is straightforward. Since D is ergodic pi > 0; moreover
∑

πi = 1. From Eq.(3.3) we conclude that

lim
k→∞

E(s(k) | s(0)) = lim
k→∞

Dk
s(0) = 1πT

s(0) =
∑

i

si(0)πi.

The last equation indicates that all sites have the same probability of πT s(0) of
reaching the status 1. Let sj(0) = 1 and si(0) = 0 for all i 6= j. Then, the last
equation reduces to πj . Assuming, for simplicity only, that πi 6= πj for all i, j, and
since πj > πi, for all i 6= j, the site j is the most influential site. Therefore, if
the value 1 represents failed status of the network, the VulnerabilityRank describes
what is the influence of each cite i to the failure of the network – it is exactly the
value πi.

Remark 1. For the case of heterogenous Markov chains, the VulnerabilityRank

is defined as the left eigenvector π corresponding to eigenvalue 1 of the influence

matrix H. We will deal with heterogenous influence mode in a forthcoming paper.

It is easy to see that if sj1(0) = . . . = sjk
(0) = 1 and si(0) = 0 otherwise, then

lim
k→∞

E(s(k) | s(0)) = πji
+ . . . + πjk

.
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Therefore, if πj1 + . . . πjk
> 0.5, then the probability of reaching the all-ones con-

sensus state for the binary influence model with initial conditions sji
(0) = . . . =

sjk
(0) = 1 and si(0) = 0 otherwise, is greater than 0.5.
As an example, we consider a binary influence model with a fully connected

network of 6 nodes and the influence matrix D given by

D =

















1/60 7/15 7/15 1/60 1/60 1/60

1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60

1/60 1/60 1/60 1/60 7/15 7/15

160 1/60 1/60 7/15 1/60 7/15

1/60 1/60 1/60 11/12 1/60 1/60

















. (3.4)

It is easy to compute the eigenvector π,

πT =
[

.03721 .05396 .04151 .3751 .206 .2862
]

.

Therefore, the site 4 is the most vulnerable site and π4 + π6 > 0.5.

(a) VulnerabilityRank for different network topologies

In this subsection we address the following problem: given a graph how to de-
fine corresponding network influence graph. Let G be a finite simple undirected
connected graph with n nodes, so that its adjacency matrix A = (aij) is a symmet-
ric (0,1)-matrix with zeros on its diagonal. We suggest two approaches to correspond
network influence graph to an arbitrary graph G.

For the first approach, called node-degree influence model, we define the in-
fluence matrix D = (dij) such that dij = aij/

∑

i aij . The second model, called
betweenness-centrality influence model, is defined as follows. Recall that the edge
betweenness centrality is defined as

cij =
∑

s 6=i,s 6=t

σst(eij)

σst

,

where eij is the edge between nodes i and j, σst(eij) is the number of shortest paths
from node s to node t that edge eij lies on and σst is the total number of shortest
paths from node s to node t. Shortest path is the minimum distance between two
nodes. The distance between two nodes is the sum of edge weights on that path.
For this model the matrix D = (dij) is defined as dij = cij/

∑

i cij .
Figures 1–3 show the VulnerabilityRank for several networks with different

topologies using node-degree influence model. The most vulnerable site is in the
scale free network: its vulnerability is 10 times larger than the maximum vulner-
abilities of small world and Erdös–Rényi (ER) graphs. The distribution of vulner-
abilities of a scale free network follows power-low distribution. For example, for a
scale free graph with 2048 nodes and a minimum node degree 2, we found that
distribution of vulnerabilities fits well the power-law distribution with exponent
1.8943.

Figures 4–6 show the VulnerabilityRank for the same networks shown in the
previous figures, but using now betweeness-centrality influence model. The average
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Figure 1. VulnerabilityRank for node-degree binary influence model on small world
graph.
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Figure 2. VulnerabilityRank for node-degree binary influence model on scale free graph.

maximum values for VulnerabilityRank for three graphs, scale free, small world
and ER, when node-degree influence model is used, are 0.0513, 0.0078, and 0.0067,
respectively. The same values for betweenness-centrality influence model are 0.1138,
0.0182, and 0.0079. We have also computed the average percentage of the nodes
that need to be in the status off at time k = 0 so that, when time goes to infinity
(k → ∞), the probability of the whole network (all sites) to be in the status 1
(off) is greater or equal to 0.5. These numbers for node-degree influence model and
scale free, small world, and ER graphs are 21.24, 40.71, and 41.09, respectively. For
betweenness-centrality influence model we have 9.73 for scale free networks, 24.27
for small world networks, and 40.04 for ER graphs. For both models: node-degree
and betweenness-centrality influence models, scale free graph is the most vulnerable
graph, while random ER graph is the most robust graph.
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Figure 3. VulnerabilityRank for node-degree binary influence model on ER graph.
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Figure 4. VulnerabilityRank for betweenness-centrality binary influence model on small
world graph.

(b) VulnerabilityRank for reducible graphs

Irreducibility is a desirable property because it is precisely the feature that guar-
antees that a Markov chain possesses a unique (and positive) stationary distribution
vector π. When Γ(DT ) is an ergodic graph, then computation of VulnerabilityRank
for the graph G is easy. However, when Γ(DT ) is reducible further adjustment
is necessary in order ensure irreducibility. We first compute the following quan-
tity πi = (1/n)

∑n

i=1 limk→∞ Dk
si(0), where si(0) = [si1(0) . . . sin(0)]T such that

sii = 1, otherwise sij = 0. The VulnerabilityRank for this graph is π = [π1 . . . πn]T .
Next, following (Brin & Page 1998), we make every state directly reachable from
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Figure 5. VulnerabilityRank for betweenness-centrality binary influence model on scale
free graph.
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Figure 6. VulnerabilityRank for betweenness-centrality binary influence model on ER
graph.

every other state by adding a perturbation matrix to D so that:

D∗ = αD + (1 − α)
11

T

n
.

It is easy to show that if the respective spectrums of D and D∗ are σ(D) =
{1, µ2, . . . , µn} and σ(D∗) = {1, λ2, . . . , λn}, then λk = αµk, k = 2, . . . , n.
It should be noted here that the matrix D∗ in the context of Web’s hyperlink
structure is generally called “the Google matrix” and its stationary distribution
is the real PageRank vector. Let π∗ be the left eigenvector corresponding to the
eigenvalue 1 of the matrix D∗. Numerically we found that π∗ ≈ π for values of α
close to 1.
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We now present example. Let

D =

















0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6

1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2

0 0 0 1/2 0 1/2

0 0 0 1 0 0

















.

This matrix is stochastic, but it is reducible, so it cannot have a unique positive
stationary distribution. To force irreducibility, choose α = 0.9; thus, one obtains
the matrix given with Eq. (3.4), for which we have already found that the node 4
is the most influential node.

(c) VulnerabilityRank for SIR model

In this subsection we study VulnerabilityRank for a stochastic susceptible-
infected-removed (SIR) model. Let G be a finite simple undirected connected graph
with n nodes, so that its adjacency matrix A = (aij) is a symmetric (0,1)-matrix
with zeros on its diagonal. Let

[

pS
i (k) p1

I(k) p1
R(k)

]

be 3-dimensional probability
vector of node i at time k. pS

i (k), pI
i (k), and p1

R(k) are the probabilities that node
i at time k is in status susceptible, infected, and removed, respectively. Further, let
[

sS
j (k) sI

j (k) sR
j (k)

]

be 3-dimensional status vector of node i at time k. The status
vector can only have one element equals to 1; the other elements are equal to 0.
For sS

j (k) = 1, the node i is in status susceptible, if sI
j (k) = 1 then the node i is

in status infected, and for sR
j (k) = 1, the node i is in status removed. We consider

the following version of the SIR model, for which the node equations are:

pS
i (k + 1) = 1 − pI

i (k + 1) − pR
i (k + 1) (3.5)

pI
i (k + 1) = sS

i (k)



1 −

N
∏

j=1

(1 − βaijs
I
j (k))



 (3.6)

pR
i (k + 1) = sI

i (k) + sR(k). (3.7)

where β is the probability that the infection attempt is successful, and A = (aij) is
the adjacency matrix of the graph. Each node that is infected at time k attempts
to infect each of its neighbors; each infection attempt is successful with probability
β independent of other infection attempts. Each infected node at time k is removed
at time k + 1.

We consider epidemic spreading on graphs starting with one node initially in-
fected, all other nodes are susceptible. In this section we address the following
problem: given a graph, what is the most important (influential, vulnerable) node.
Intuitively, the node is most influential, if when is initially infected, the spread-
ing is most dominant (the average number of infected nodes when time goes to
infinity is the largest or the time needed the nodes to be infected is the largest).
For SIR model we compute the VulnerabilityRank for node-degree influence model.
VulnerabilityRank gives answer to our problem: indeed, the most vulnerable node
computed with VulnerabilityRank is also the most important (influential) node for
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the SIR dynamics on the graph G. As an example, we show on Figure 7 the average
number of infected nodes for small-world graph versus time for two different values
of β when the most influential, the least influential, and random node are initially
infected.
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Figure 7. Average number of infected nodes versus time for three different initially
infected nodes: (a) β = 0.5 (b) β = 1.

4. Applications

(a) Network of infrastructures

Infrastructures are vital for the operation of our society. A mathematical model
that might be applied for assessment of the compound risk of failure of interdepen-
dent infrastructure networks, is provided by Sivonen et al. (Sivonen 2004), in the
frames of which the following groups of inter-operating items have been considered:
technical infrastructure (energy supply, communications, information systems), ba-
sic services and supplies (food supply, transport logistics, mass media, health care,
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Figure 8. Network influence graph for the network of infrastructures.
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Figure 9. VulnerabilityRank for infrastructure network influence graph shown in Figure
8.

financial services) and threats (threats to data system, illegal immigration, threats
to food and health, threats to environment, economic threats, crime and terrorism,
disasters, international tension, war and warlike situations). For each of the items
the frequency, duration and effects of failures are studied, as well as the dependency
of a failure of one item on the failures in other items. An example of a network in-
fluence graph Γ(DT ) obtained in this way using real data from the web page of the
National Emergency Supply Agency of Finland: www.nesa.fl, is shown in Figure 8.

Figure 9 shows the VulnerabilityRank for infrastructure network influence graph
shown in Fig. 8. The most vulnerable sites are the sites representing the following
threats (out of 17 threats grouped in 4 groups: Causes for severe disturbances,
Economic threats, Environment and health treats, Political security threats) : 1.
Weather phenomenon, 2. Threats to data systems, 3. Crime and terrorism, 4. Strike,
and 5. International logistics crisis. The threats 1 and 4 belong to the same group:
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‘Causes for severe disturbances’, threats 2 i 5 to the group ‘Economic threats’ and 3
to ‘Political security threats’. Since the influence graph in this example is reducible,
we compute the VulnerabilityRank using approach described in the previous section
with α = 0.9.

(b) Power grid

Our next example is the EU power grid. The “Union for the Co-ordination
of Transmission of Electricity” (UCTE) is the association of transmission system
operators in continental Europe; different data can be found at UCTE web page:
www.ucte.org. For this paper, we consider the physical energy flows for the month
January 2007. The data can be organized as a directed weighted graph with N = 26
nodes. Each node represents a country (or region) in EU as follows: 1 represents Aus-
tria, 2 Bosnia, 3 Belgium, 4 Bulgaria, 5 Switzerland, 6 Czech Republic, 7 Germany,
8 Spain, 9 France, 10 Greece, 11 Croatia, 12 Hungary, 13 Italy, 14 Luxembourg, 15
Monte Negro, 16 Macedonia, 17 Netherland, 18 Poland, 19 Portugal, 20 Romania,
21 Serbia, 22 Slovenia, 23 Slovakia, 24 Denmark West, 25 Ukraine West, and 26
represents others (Albania, Belarus, Denmark East, Great Britain, Morocco, Re-
public of Moldavia, Norway, Sweden, Republic of Turkey and Ukraine). The weight
ai,j represents a value (in GWh) that country i exports to country j. For example,
a1,5 = 906, a1,7 = 227, a1,12 = 104, a1,13 = 121, and a1,22 = 72 means that Aus-
tria exported during January 2007 906 GWh energy to Switzerland, 227 GWh to
Germany, and so on.

We compute the VulnerabilityRank for the influence model defined on this graph
using both approaches: node-degree and betweenness centrality. The results are
shown in Fig. 10 and Fig. 11. For the node-degree influence model the most vul-
nerable node is 9 (corresponding to France), while for the betweenness- centrality
influence model the most influential node is 7 (corresponding to Germany).
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Figure 10. VulnerabilityRank for node-degree binary influence model for the physical
energy flows for the month January 2007.

(c) World Wide Web

The World Wide Web (commonly shortened to the Web) is a system of inter-
linked hypertext documents accessed via the Internet. Suppose the web of interest
contains n pages, each page indexed by an integer k, 1 ≤ k ≤ n. The web is an
example of a directed graph: an arrow from page i to page j indicates a link from
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Figure 11. VulnerabilityRank for betweenness-centrality binary influence model for the
physical energy flows for the month January 2007.

page i to page j. We will use the phrase “importance score” (also page rank) for
any quantitative rating of a web page’s importance. The importance score for any
web page will always be a non-negative real number. Let xk denote the importance
score of page k in the web, and Lk ⊂ {1, . . . , n} denote the set of pages with a link
to page k. For each k importance score is defined as xk =

∑

j∈Lk

xj

nj
, where nj is the

number of outgoing links from page j. Finding the importance score for nodes (web
pages) reduce to finding solutions of the linear equation Ax = x, where A, so called
link matrix, is square column-stochastic n×n matrix. Thus, the problem of finding
importance score for the web pages is equivalent to finding the eigenvector, called
PageRank, that corresponds to eigenvalue 1, of the matrix A. Assuming that the
matrix A is the influence matrix for the binary influence model, we may conclude
that the vector VulnerabilityRank for the binary influence model defined on the
web is equal to the vector PageRank.

5. Conclusions

We have suggested a method for calculating the VulnerabilityRank for networks of
interacting Markov chains. The method is readily applicable for huge matrices and
heterogenous Markov chains. The method can be applied to any network, including
most of the infrastructure networks, such as power grid, gas network, transporta-
tion network, as well as to network of infrastructures. It can also be extended to
biological and social networks provided that each node can be described with a
Markov chain. We stress that our concept of VulnerabilityRank is different than
both recently introduced concepts of PageRank and SecureRank – it reduces to
these concepts only when we consider node-degree binary influence model. More
general treatment of VulnerabilityRank for heterogenous influence model will be a
subject of interest in our future work.
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